skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yavitt, Benjamin M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Dynamically crosslinked polymer networks, characterized by non‐permanent bonds, offer unique viscoelastic properties that can be used for various applications such as self‐healing coatings and reusable adhesives. This study investigates the spreading behavior of a silicone polymer network with dynamic imine bonds, focusing on the relationship between material properties and spreading dynamics. We prepare polydimethylsiloxane (PDMS) networks with varied rheological properties by adjusting the ratio of amine and aldehyde groups and curing conditions. The spreading of PDMS spherical drops is investigated on surfaces with different surface energies, with the process quantified by measuring the contact length and height over time. Our findings reveal that higher modulus spheres spread more slowly, and that the spreading length increases more on high energy surfaces. This research could provide insights for developing coatings and adhesives with tunable properties by studying the interaction between transiently‐crosslinked polymers and substrates during spreading. 
    more » « less
    Free, publicly-accessible full text available November 17, 2025
  2. null (Ed.)
  3. null (Ed.)
  4. Lyotropic chromonic liquid crystals (LCLCs) represent aqueous dispersions of organic disk-like molecules that form cylindrical aggregates. Despite the growing interest in these materials, their flow behavior is poorly understood. Here, we explore the effect of shear on dynamic structures of the nematic LCLC, formed by 14 wt% water dispersion of disodium cromoglycate (DSCG). We employ in situ polarizing optical microscopy (POM) and small-angle and wide-angle X-ray scattering (SAXS/WAXS) to obtain independent and complementary information on the director structures over a wide range of shear rates. The DSCG nematic shows a shear-thinning behavior with two shear-thinning regions (Region I at  < 1 s −1 and Region III at  > 10 s −1 ) separated by a pseudo-Newtonian Region II (1 s −1 <  < 10 s −1 ). The material is of a tumbling type. In Region I,  < 1 s −1 , the director realigns along the vorticity axis. An increase of  above 1 s −1 triggers nucleation of disclination loops. The disclinations introduce patches of the director that deviates from the vorticity direction and form a polydomain texture. Extension of the domains along the flow and along the vorticity direction decreases with the increase of the shear rate to 10 s −1 . Above 10 s −1 , the domains begin to elongate along the flow. At  > 100 s −1 , the texture evolves into periodic stripes in which the director is predominantly along the flow with left and right tilts. The period of stripes decreases with an increase of  . The shear-induced transformations are explained by the balance of the elastic and viscous energies. In particular, nucleation of disclinations is associated with an increase of the elastic energy at the walls separating nonsingular domains with different director tilts. The uncovered shear-induced structural effects would be of importance in the further development of LCLC applications. 
    more » « less